NUTRIENT INTERACTIONS

- What is Interaction ?
- What is the need for knowing nutrient interactions??
- **Types** of nutrient interactions ??
- Interactions among the essential nutrients ??
- Case studies on Nutrient interactions ..
- CONCLUSION

WHAT IS INTERACTION ???

✓ Interaction : In simpler terms Interaction means Influence / effect of one upon the other is called INTERACTION.

(**OR**)

The availability of an ion is influenced by the presence of other ions in soil solution is called Interaction .

 \succ It may positive or Negative or no interaction.

Why we need to know the plant nutrient interactions

??

- There is need for us to know the nutrient interactions and also the interaction of nutrients (fertilizers) with other insecticides/fertilizers/pesticides.
- we must know the antagonistic interactions so that we avoid the Combined application of fertilizers (Nutrients) which having antagonistic effect In between them

Ex: application of DAP/SSP and Zinc is avoided ..because of antagonistic effect.

NEED for knowing the Interactions???

- **Balanced supply** of of essential nutrients is one of the most important factors in increasing crop yields.
- The **objective** of this topic to discuss interactions among major and minor nutrients in crop plants.
- In crop plants, the nutrient interactions are generally measured in terms of growth response and change in concentration of nutrients.

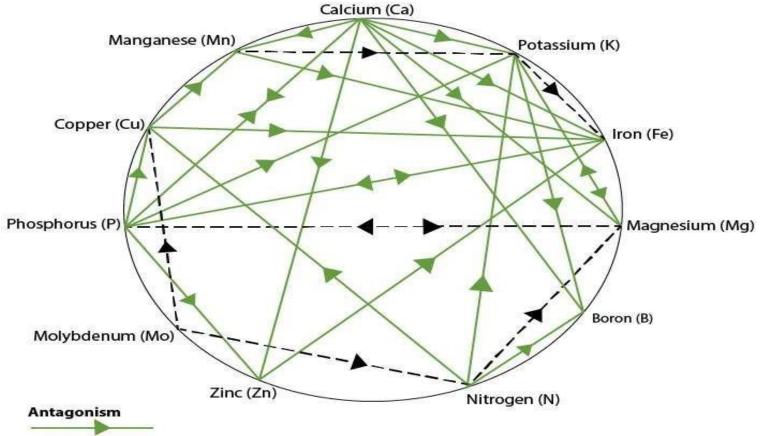
- ✓ To know what combinations of fertilizers are suitable for application at one time
- \checkmark To know the effect of one nutrient upon the other..
- To minimize the antagonistic effects by applying
 Right quantity of fertilizers at Right time in Right place according to the crop needs.
- ✓ Better understanding of nutrient interactions may be useful in understanding importance of balanced supply of nutrients and consequently improvement in plant growth or yields

Types of Nutrient Interactions

- Synergistic effect : Upon addition of two nutrients, a increase in crop yield that is more than adding only one separately, the interaction is positive.
- Ex: 5 + 5 = More than 10 type interactions
- Antagonistic effect: Similarly, if adding the two nutrients together produced less yield as compared to individual ones, the interactions is negative.

Ex: 5 + 5 = less than 10 type of interactions

No interaction/ Zero interaction : When there is no change, there is no interaction.
 Ex : 5 + 5 =10 type of interactions.


• All the three interactions among essential plant nutrients have been reported.

- □ However, most interactions are complex.
- ✓ A nutrient interacting simultaneously with more than one nutrients.

This may induced deficiencies, toxicities, modified growth responses, and/or modified nutrient composition.

INTERACTIONS

- 1. Interaction between the nutrients .
- 2. Interactions between nutrients and plant population.
- 3.Interaction between Nutrients and planting date
- 4 . Interactions between nutrients and placement
- 5. Interaction between nutrient placement and conservational tillage
- 6. Interaction between nutrients and hybrid or variety .

Decreased availability of a nutrient to a plant due to the action of another nutrient

Stimulation

- - - - - - - High level of a nutrient increases the demand by the plant for another nutrient

Synergistic effects

Application of one nutrient may increase the availability of the other nutrient.

- 1.Application of Cl containing and acid forming Nfertilizers boost Mo uptake.
- 2.Application of N usually enhances micronutrient and utilization.
- 3. Application of Mg increases P uptake.
- 4.Application of P increases uptake and translocation of Mo.

- Application of NH4 N improves P uptake.
- Application of N and P improves K uptake.
- Higher availability of Mg and NO3 N boosts Mo uptake.

Nutrient	N	Р	K	Ca		S		Mn	Zn	Cu	Mo	B	NH ₄
Ν			а										
Р							а		a	a			
K	a			a	а								
					а		а					as	а
Mg S			as	a			а	as					а
S													
Na			а	a	а								
Fe				а	а			а	a	a			
Mn							а				а		
Zn							а	а	a				
Mo		S				a				a			
В					а								

Nutrient antagonism and interaction:

Nitrogen:

- ➤ When high levels of N induce accelerated growth rates, levels of micronutrients that would normally be marginal can become deficient.
- High soil levels of N can assist P, Ca, B, Fe and Zn but an excess can dilute these elements. Low soil levels can reduce P, Ca, B, Fe and Zn uptake. Ammonium N can make Mo deficiency appear less obvious.

Phosphorus:

High levels of P reduce Zn and, to a lesser degree, Ca uptake. It is antagonistic to Boron in low pH soils.

- **Potassium**: High levels of K reduce Mn and to lesser extent Calcium, Iron, Copper, Manganese and Zinc uptake. Boron levels can either be low or toxic. Low levels can accentuate Iron deficiency.
- **Calcium:** High levels of Ca can accentuate Boron deficiency. Liming can decrease the uptake of Boron, Copper, Iron, Manganese and Zinc by raising soil pH.
- **Copper:** High levels of Copper can accentuate Molybdenum and to a lesser degree Iron, Manganese and Zinc deficiency.

Iron: Iron deficiency can be accentuated by liming, low
 K levels or high levels of Co, Mn or Zn.

□ Manganese: High levels of Co, Fe or Zn can accentuate Mn deficiency – especially repeated soil applications of Iron. Uptake can be decreased by liming or increased by Sulfur applications (because of the affects on pH)

■ Molybdenum: Deficiencies can be accentuated by high levels of Copper and to a lesser degree Mn. Uptake can be adversely affected by sulfates. Uptake can be increased by phosphates and liming. Mo can increase Co deficiencies in animals.

- **Zinc:** Uptake can be decreased by high **P** levels , liming or high levels of **Co** , **Fe or Mn** .
- ✓ Zn deficiencies are often associated with Mn deficiencies, especially in citrus.

ANTAGONISTICEFFECTS

If becomes excess	Becomes deficit
Са	Р
Ca and Mg	K
Ca	Mg (If ratio is more than 7
	:1)
K and NH4	Mg
N,K and Ca	В
Fe and SO4	Mo
Cu, Mn, and NH4- N	Мо
Cu, Fe, and Mn	Al
Ρ	Zn
N,P,K	Cu
Zn and Al	Cu
Р	Мо
No3-N	Fe